

VIDYA BHAWAN, BALIKA VIDYAPITH Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

Class: X

Subject:Mathematics

Date: 26.11.2020

Exercise 12.2

Q.6. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle.

Sol. Here, radius (r) = 15 cm Sector angle $\theta = 60^{\circ}$ \therefore Area of the sector with $\theta = 60^{\circ}$ $= \frac{\theta}{360} \times \pi r^2 = \frac{60}{360} \times \frac{314}{100} \times 15 \times 15 \text{ cm}^2 = \frac{11775}{100} \text{ cm}^2 = 117.75 \text{ cm}^2$ Since $\angle O = 60^{\circ}$ and OA = OB = 15 cm $\angle AOB$ is an equilateral triangle. $\Rightarrow AB = 15 \text{ cm}$ and $\angle A = 60^{\circ}$ Draw OM $\perp AB$ $\therefore \frac{OM}{OA} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$ $\Rightarrow OM = OA \times \frac{\sqrt{3}}{2} = \frac{15\sqrt{3}}{2} \text{ cm}$ Now, $ar(\triangle AOB) = \frac{1}{2} \times AB \times OM$

$$=\frac{1}{2} \times 15 \times 15 \frac{\sqrt{3}}{2} \text{ cm}^2 = \frac{225\sqrt{3}}{4} \text{ cm}^2$$

Now area of the minor segment

= (Area of minor sector) – (ar $\triangle AOB$)

Area of the major segment

= [Area of the circle] – [Area of the minor segment]

$$= \pi r^2 - 20.4375 \text{ cm}^2 = \left[\frac{314}{100} \times 15^2\right] - 20.4375 \text{ cm}^2$$

= 706.5 - 20.4375 cm² = 686.0625 cm².

Q.7. A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle.

...(1)

Sol. Here, $\theta = 120^{\circ}$ and r = 12 cm \therefore Area of the sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$ $=\frac{120}{360} \times \frac{314}{100} \times 12 \times 12 \text{ cm}^{2}$ $=\frac{314 \times 4 \times 12}{100} \text{ cm}^{2} = \frac{15072}{100} \text{ cm}^{2} = 150.72 \text{ cm}^{2}$

Now, area of
$$\triangle AOB = \frac{1}{2} \times AB \times OM$$
 ...(2)
In $\triangle OAB, \angle O = 120^{\circ}$
 $\Rightarrow \angle A + \angle B = 180^{\circ} - 120 = 60^{\circ}$
 $\because OB = OA = 12 \text{ cm} \Rightarrow \angle A = \angle B = 30^{\circ}$
So, $\frac{OM}{OA} = \sin 30^{\circ} = \frac{1}{2} \Rightarrow OM = OA \times \frac{1}{2}$
 $\Rightarrow OM = 12 \times \frac{1}{2} = 6 \text{ cm}$
In right $\triangle AMO, 12^{2} - 6^{2} = AM^{2}$
 $\Rightarrow 144 - 36 = AM^{2}$
 $\Rightarrow 108 = AM^{2}$
 $\Rightarrow AM = \sqrt{108} = 6\sqrt{3}$
 $\Rightarrow 2AM = 12\sqrt{3}$
Now, from (2),
Area of $\triangle AOB = \frac{1}{2} \times AB \times OM = \frac{1}{2} \times 12\sqrt{3} \times 6 \text{ cm}^{2} = 36\sqrt{3} \text{ cm}^{2}$
 $= 36 \times 1.73 \text{ cm}^{2} = 62.28 \text{ cm}^{2}$...(3)
From (1) and (3)
Area of the minor segment
 $= [Area of minor segment] - [Area of $\triangle AOB]$$

 $= [150.72 \text{ cm}^2] - [62.28 \text{ cm}^2] = 88.44 \text{ cm}^2.$

Q.8. A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5m long rope (see figure). Find:

(i) the area of that part of the field in which the horse can graze.

(ii) the increase in the grazing area if the rope were 10m long instead of 5m.

Sol. Here, Length of the rope = 5 m

 \therefore Radius of the circular region grazed by the horse = 5 m

(i) Area of the circular portion grazed

$$= \frac{90^{\circ}}{360^{\circ}} \times \pi r^{2}$$
$$= \frac{90}{360} \times \frac{314}{100} \times 5 \times 5m^{2} = \frac{1}{4} \times \frac{314}{16}m^{2} = \frac{157}{8}m^{2} = 19.625 \text{ m}^{2}$$

(ii) When length of the rope is increased to 10 m,

∴ r = 10 m
⇒ Area of the circular region where θ = 90°.
=
$$\frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{90}{360} \times \frac{314}{100} \times (10)^2 m^2 = \frac{1}{4} \times 314 m^2 = 78$$

∴ Increase in the grazing area

= 78.5 – 19.625 m² = 58.875 m².

78.5m²

